# CyberShake

### From SCECpedia

CyberShake is a SCEC research project that is working to develop a physics-based computational approach to probabilistic seismic hazard analysis (PSHA). The CyberShake approach uses full 3D wave propagation simulations to forecast ground motions that will be produced by specific ruptures which is expected to produced significantly more accurate estimates for many sites than commonly used empirical-based ground motion decay attenuation relationships.

## Contents |

## Physics-based Probabilistic Seismic Hazard Analysis

SCECâ€™s CyberShake project utilizes 3D simulations and finite-fault rupture descriptions to compute deterministic (scenario-based) and probabilistic seismic hazard in Southern California. Computational demands are intense, requiring parallel algorithms and high throughput workflows. Long period effects such as coupling of directivity and basin response that cannot be captured with standard approaches are clearly evident in the recently completed CyberShake 1.0 hazard map. Moreover, CyberShake allows for rapid recomputation of the hazard map to reflect short-term probability variations provided by operational earthquake forecasting. Going beyond traditional hazard analysis, event-specific phenomena can also be identified and analyzed through examination of the individual ground motion waveforms. This process highlights the importance of key elements in the Earthquake Rupture Forecast that are required by the simulation approach, including magnitude-rupture area scaling, aleatory and epistemic magnitude variability and spatio-temporal rupture characterization.

## Computational PSHA

CyberShake is a computationally intensive way to improve standard probabilistic seismic hazard analysis. The CyberShake method for calculating long-term seismic hazard analysis is not yet the standard method for calculating long-term seismic hazards in the United States. The CyberShake computational technique has not been possible until recent improvements in 3D earth models, in 3D wave propagation software, in HPC computational resources, in large-scale workflows and data management. SCEC geoscientists are leading the scientific verification and validation of the CyberShake computational approach and SCEC/CME computer scientists are leading development of computational tools and techniques needed to implement the CyberShake calculations at the necessary scale. The CyberShake computational approach improves on standard PSHA calculations in a number of ways including:

- Wave propagation simulations more accurately describe the distribution of ground motions than the currently used ground motion prediction equations [GMPE].
- Wave propagation simulations provide good estimates of both ground motion amplitude as well as ground motion duration. Ground motion duration is not available from empirical peak ground motion methods.

## CyberShake Seismic Hazard Model Calculations

CyberShake calculations are performed using a number of different input confirmations, and computational software. SCEC reseachers define a calculation of interest as a Study. To qualify as a Study, the calculation needs to be clearly defined so we can calculate the types and volume of output data.

As of April 2013, we are moving the CyberShake Study numbering scheme to a Year.Month format based on date the simulations are started.

Earlier CyberShake number Study numbers, not based on dates, are shown below.

- CyberShake Study 2.2
- CyberShake 2.0
- CyberShake 1.5
- CyberShake 1.4
- CyberShake 1.3
- CyberShake 1.2
- CyberShake 1.1

Here is a comparison of CyberShake studies.

## CyberShake Curves

- 1 Hz CyberShake Curves
- Comparison Curves
- Hybrid Deterministic/Stochastic Curves
- Fall 2011 Production Run Curves

## Related Entries

- UCVM
- UCERF3.0
- High Frequency CyberShake
- CyberShake Workplan
- CyberShake SmartMap
- CyberShake Workflows
- CyberShake Computational Estimates
- UCERF3.0
- CyberShake SmartMap
- CyberShake Testing
- CyberShake Status
- CyberShake PBR
- SEISM Project
- Geoinformatics Project
- Accessing CyberShake Seismograms

## References

- Graves, R., Jordan, T. H., Callaghan, S., Deelman, E., Field, E. H., Juve, G., Kesselman, C., Maechling, P., Mehta, G., Okaya, D., Small, P., Vahi, K. (2010), CyberShake: A Physics-Based Seismic Hazard Model for Southern California, Pure and Applied Geophysics, Accepted for Publication March, 2010
- Graves, R., S. Callaghan, E. Deelman, E. Field, N. Gupta, T. H. Jordan, G. Juve, C. Kesselman, P. Maechling, G. Mehta, D. Meyers, D. Okaya and K. Vahi (2008) Physics Based Probabilistic Seismic Hazard Calculations for Southern California,14th World Conference on Earthquake Engineering, October, 2008, Beijing China
- The SCEC CyberShake Project: A Computational Platform for Full Waveform Seismic Hazard Analysis Robert Graves (USGS), Scott Callaghan (USC), Patrick Small (USC), Gaurang Mehta (USC), Kevin Milner (USC), Gideon Juve (USC), Karan Vahi (USC), Edward Field (USGS), Ewa Deelman (USC/ISI), David Okaya (USC), Philip Maechling (USC), Thomas H. Jordan (USC) - SSA April 2011
- Cui, Y., Poyraz, E., Callaghan, S., Maechling, P., Chen, P. and Jordan, T. H., Accelerating CyberShake Calculations on XE6/XK7 Platforms of Blue Waters, Blue Waters and XSEDE Extreme Scaling Workshop 2013, August 15-16, Boulder, 2013.