Recent advances in 3D full-waveform inversion (FWI) for site characterization

Challenges and open issues

Loukas F. Kallivokas

Mechanics, Uncertainty, and Simulation in Engineering
Department of Civil, Architectural, and Environmental Engineering

and

The Institute for Computational Engineering and Sciences

The University of Texas at Austin
Outline

1. Background

2. 3D forward wave simulation problem
 - PML formulations for elastodynamics

3. 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site

4. Conclusions
 - Summary
 - Challenges
Site characterization (SC) by full-waveform inversion (FWI)

Overarching goal: to reconstruct the material profile of probed, semi-infinite, near-surface, geologic formations using elastic waves for interrogation, and surface records of the complete waveforms of the formation’s response in the time-domain.
SC by FWI - The framework and its challenges

- An imaging problem: infer properties from sensor data
- Sensor deployment is limited - setting inferior to medical imaging
- Properties are spatially distributed
- No *a priori* simplifying assumptions (geometry; layering; etc)
- Physics drives discretization → millions of unknown properties; for a 100m × 100m × 20m domain: 2 million elastic properties
- SC focuses on near-surface deposits: domain truncation needed
- Exploration geophysics drives advances
- Scale issues, complex physics, algorithmic challenges, open problem even for the acoustic case
SC by FWI - Recent advances in our work

Key problem ingredients:

- The forward problem
 - Resolve wave motion in unbounded, arbitrarily heterogeneous, domains

- FWI: an inverse medium problem
 - To address the imaging/inversion: PDE-constrained optimization framework
 - To address the scale: parallel computing
 - To address robustness: physics-based algorithmic tweaks
Outline

1 Background

2 3D forward wave simulation problem
 - PML formulations for elastodynamics

3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site

4 Conclusions
 - Summary
 - Challenges
Perfectly-Matched-Layer (PML) truncated domains

Forward wave simulation problem - key characteristics
- Probed domain is arbitrarily heterogeneous
- Probed domain is semi-infinite in extent
- The ROI is rather limited in extent...need for domain truncation

Quality domain truncation is paramount → PMLs

The PML is a buffer zone that surrounds a truncated finite computational domain. Within the buffer, the propagating waves are forced to decay exponentially, without generating reflections from the interface (perfectly matched).

Advantages
- absorbs waves without reflection for all non-zero angles-of-incidence and frequencies
- can handle arbitrary heterogeneity
- has tunable parameters
Hybrid formulation (optimal)

Standard displacement-based elastodynamics for Ω^{RD}
Mixed-field (stress-displacement) formulation for Ω^{PML}
The IBVP (3rd-order in time)

Find \(u(x, t) \in \Omega^{RD} \cup \Omega^{PML} \), \(S(x, t) \in \Omega^{PML} \), such that:

\[
\text{div} \left\{ \mu \left[\nabla \dot{u} + (\nabla \dot{u})^T \right] + \lambda (\text{div} \, \dot{u}) \right\} + b = \rho \ddot{u} \quad \text{in} \ \Omega^{RD} \times J
\]
\[
\text{div} \left(\dot{S}^T \Lambda_e + \dot{S}^T \Lambda_p + S^T \Lambda_w \right) = \rho \left(a \ddot{u} + b \dddot{u} + c \dot{u} + d u \right) \quad \text{in} \ \Omega^{PML} \times J
\]
\[
a \dddot{S} + b \dot{S} + c \dot{S} + d S = \mu \left[(\nabla \dddot{u}) \Lambda_e + \Lambda_e (\nabla \dddot{u})^T + (\nabla \dot{u}) \Lambda_p + \Lambda_p (\nabla \dot{u})^T \right] + \mu \left[(\nabla u) \Lambda_w + \Lambda_w (\nabla u)^T \right] + \lambda \left[\text{div} (\Lambda_e \dddot{u}) + \text{div} (\Lambda_p \dot{u}) + \text{div} (\Lambda_w u) \right] \quad \text{in} \ \Omega^{PML} \times J
\]

BCs:
\[
\left\{ \mu \left[\nabla \dddot{u} + (\nabla \dddot{u})^T \right] + \lambda (\text{div} \, \dddot{u}) \right\} \mathbf{n}^+ = \dot{g}_n \quad \text{on} \ \Gamma_N^{RD} \times J
\]
\[
(\dot{S}^T \Lambda_e + \dot{S}^T \Lambda_p + S^T \Lambda_w) \mathbf{n}^- = 0 \quad \text{on} \ \Gamma_N^{PML} \times J
\]
\[
u = 0 \quad \text{on} \ \Gamma_D^{PML} \times J
\]
\[
u^+ = \nu^- \quad \text{on} \ \Gamma^I \times J
\]
\[
\left\{ \mu \left[\nabla \dddot{u} + (\nabla \dddot{u})^T \right] + \lambda (\text{div} \, \dddot{u}) \right\} \mathbf{n}^+ + (\dot{S}^T \Lambda_e + \dot{S}^T \Lambda_p + S^T \Lambda_w) \mathbf{n}^- = 0 \quad \text{on} \ \Gamma^I \times J
\]
Semi-discrete form

\[M \ddot{d} + C \dot{d} + K d + G d = \dot{f} \]

or \[M \dot{d} + C \dot{d} + K d + G \dot{d} = f, \quad \dot{d} = \int_0^t d(\tau)|_{PML} \, d\tau \quad \Rightarrow \quad \dot{d} = d|_{PML} \]

\[
M = \begin{bmatrix}
\bar{M}_{RD} + \bar{M}_a & 0 \\
0 & N_a
\end{bmatrix} \\
G = \begin{bmatrix}
\bar{M}_d & A_{wu} \\
-A_{wl}^T & N_d
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
\bar{M}_b & A_{eu} \\
-A_{el}^T & N_b
\end{bmatrix} \\
K = \begin{bmatrix}
\bar{K}_{RD} + \bar{M}_c & A_{pu} \\
-A_{pl}^T & N_c
\end{bmatrix}
\]

\[
d = \begin{bmatrix}
u_h \\
S_h
\end{bmatrix}^T \\
f = \begin{bmatrix}
f_{RD} \\
0
\end{bmatrix}^T
\]
Temporal discretization

Temporal integration:

\[M \ddot{\mathbf{d}} + C \dot{\mathbf{d}} + K \mathbf{d} + G \mathbf{d} = \mathbf{f}, \quad \ddot{\mathbf{d}} = \int_0^t \mathbf{d}(\tau)|_{\text{PML}} \, d\tau \quad \Rightarrow \quad \dot{\mathbf{d}} = \mathbf{d}|_{\text{PML}} \]

A couple of choices → implicit Newmark Method

\[
\begin{bmatrix}
M & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{\mathbf{d}} \\
\dot{\mathbf{d}}
\end{bmatrix} +
\begin{bmatrix}
C & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
\dot{\mathbf{d}} \\
\mathbf{d}
\end{bmatrix} +
\begin{bmatrix}
K & G \\
-I & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{d}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{f}
\end{bmatrix}
\quad \text{Un-Symmetric 1}
\]

\[
\begin{bmatrix}
M & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
\ddot{\mathbf{d}} \\
\dot{\mathbf{d}}
\end{bmatrix} +
\begin{bmatrix}
C & 0 \\
-I & 0
\end{bmatrix}
\begin{bmatrix}
\dot{\mathbf{d}} \\
\mathbf{d}
\end{bmatrix} +
\begin{bmatrix}
K & G \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{d}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{f}
\end{bmatrix}
\quad \text{Un-Symmetric 2}
\]

A better choice using spectral elements → explicit Runge-Kutta method

\[
\frac{d}{dt} \begin{bmatrix}
x_0 \\
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
0 & I & 0 \\
0 & 0 & I \\
-G & -K & -C
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
\mathbf{f}
\end{bmatrix}
\]

where \(x_0 = \ddot{\mathbf{d}}, \ x_1 = \dot{\mathbf{d}}, \ x_2 = \mathbf{d}. \)
Numerical experiment: heterogeneous medium with inclusion

\[c_s(z) = \begin{cases}
400 \text{ m/s}, & \text{ if } -20m \leq z \leq 0m \\
500 \text{ m/s}, & \text{ if } -50m \leq z < -20m \\
600 \text{ m/s}, & \text{ ellipsoidal inclusion}
\end{cases} \]

\(\nu = 0.25 \)
\(\Delta t = 4.8 \times 10^{-4} \text{s} \)

- element size = 1.25\(m \)
- # elements = 500’000
- # unknowns = 24’228’426
- # unknowns ED = 521’884’704

PML parameters:
- \(m = 2 \)
- \(\alpha_o = 5 \)
- \(\beta_o = 500 \)
Displacements time histories

Enlarged domain
PML-truncated domain

s_{p8}
Energy decay

![Graphs showing energy decay over time with different decay rates](image)

- Standard scale
- Logarithmic scale

Enld. dom.
\(\beta_o = 400 \)
\(\beta_o = 500 \)
\(\beta_o = 600 \)
Long-time stability

125'000 time steps ($\beta_o = 500$)
Snapshots of total displacement taken at $t = 0.111, 0.147, 0.183, 0.219, 0.255, 0.291, 0.327, 0.363$ s.
PML accuracy - relative error

Error at sampling points between hybrid-PML and enlarged domain solutions

<table>
<thead>
<tr>
<th>sample point</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>error (Example 1)</th>
<th>error (Example 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.17×10^{-12}</td>
<td>4.61×10^{-10}</td>
</tr>
<tr>
<td>sp2</td>
<td>+50</td>
<td>0</td>
<td>0</td>
<td>2.52×10^{-8}</td>
<td>6.07×10^{-7}</td>
</tr>
<tr>
<td>sp3</td>
<td>+50</td>
<td>0</td>
<td>-25</td>
<td>2.89×10^{-9}</td>
<td>2.87×10^{-6}</td>
</tr>
<tr>
<td>sp4</td>
<td>+50</td>
<td>0</td>
<td>-50</td>
<td>1.46×10^{-7}</td>
<td>7.03×10^{-6}</td>
</tr>
<tr>
<td>sp5</td>
<td>0</td>
<td>0</td>
<td>-50</td>
<td>9.86×10^{-9}</td>
<td>1.41×10^{-5}</td>
</tr>
<tr>
<td>sp6</td>
<td>+50</td>
<td>+50</td>
<td>0</td>
<td>3.26×10^{-7}</td>
<td>1.86×10^{-6}</td>
</tr>
<tr>
<td>sp7</td>
<td>+50</td>
<td>+50</td>
<td>-25</td>
<td>5.50×10^{-8}</td>
<td>6.72×10^{-6}</td>
</tr>
<tr>
<td>sp8</td>
<td>+50</td>
<td>+50</td>
<td>-50</td>
<td>5.08×10^{-7}</td>
<td>6.44×10^{-6}</td>
</tr>
</tbody>
</table>
Outline

1. Background
2. 3D forward wave simulation problem
 - PML formulations for elastodynamics
3. 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
4. Conclusions
 - Summary
 - Challenges
Goal: find the distribution of material properties $\lambda(x), \mu(x)$

PDE-constrained optimization problem:

$$\min_{\lambda, \mu} J(\lambda, \mu) := \frac{1}{2} \sum_{j=1}^{N_r} \int_0^T \int_{\Gamma_m} (u - u_m) \cdot (u - u_m) \delta(x - x_j) \, d\Gamma \, dt + R(\lambda, \mu)$$

subject to the continuous forward problem

Regularization:

$$R^{TN}(\lambda, \mu) = \frac{R_\lambda}{2} \int_{\Omega} \nabla \lambda \cdot \nabla \lambda \, d\Omega + \frac{R_\mu}{2} \int_{\Omega} \nabla \mu \cdot \nabla \mu \, d\Omega$$

$$R^{TV}(\lambda, \mu) = \frac{R_\lambda}{2} \int_{\Omega^{RD}} (\nabla \lambda \cdot \nabla \lambda + \epsilon)^{\frac{1}{2}} \, d\Omega + \frac{R_\mu}{2} \int_{\Omega^{RD}} (\nabla \mu \cdot \nabla \mu + \epsilon)^{\frac{1}{2}} \, d\Omega$$
The Lagrangian functional

\[L(u, S, w, T, \lambda, \mu) := \frac{1}{2} \sum_{j=1}^{N_r} \int_0^T \int_{\Gamma_m} (u - u_m) \cdot (u - u_m) \delta(x - x_j) \, d\Gamma \, dt + R(\lambda, \mu) \]

\[- \int_0^T \int_{\Omega_{RD}} \nabla w : \{ \mu [\nabla u + (\nabla u)^T] + \lambda (\text{div } u) I \} \, d\Omega \, dt \]

\[- \int_0^T \int_{\Omega_{PML}} \nabla w : (\dot{S}^T \Lambda_e + S^T \Lambda_p + \bar{S}^T \Lambda_w) \, d\Omega \, dt - \int_0^T \int_{\Omega_{RD}} w \cdot \rho \ddot{u} \, d\Omega \, dt \]

\[- \int_0^T \int_{\Omega_{PML}} w \cdot \rho (a \ddot{u} + b \ddot{u} + c \ddot{u} + d \ddot{u}) \, d\Omega \, dt + \int_0^T \int_{\Gamma_{RD}} w \cdot g_n \, d\Gamma \, dt \]

\[+ \int_0^T \int_{\Omega_{RD}} w \cdot b \, d\Omega \, dt - \int_0^T \int_{\Omega_{PML}} T : (a \dot{S} + b \dot{S} + c \bar{S} + d \ddot{S}) \, d\Omega \, dt \]

\[+ \int_0^T \int_{\Omega_{PML}} T : \mu [(\nabla \ddot{u}) \Lambda_e + \Lambda_e (\nabla \ddot{u})^T + (\nabla u) \Lambda_p + \Lambda_p (\nabla u)^T + (\nabla \ddot{u}) \Lambda_w + \Lambda_w (\nabla \ddot{u})^T] \]

\[+ T : \lambda [\text{div} (\Lambda_e \ddot{u}) + \text{div} (\Lambda_p u) + \text{div} (\Lambda_w \ddot{u})] I \, d\Omega \, dt \]
Optimality system

Stationarity enforced by the vanishing of first-order Gâteau derivatives

State (forward) problem: \(\mathcal{L}'(u, S, w, T, \lambda, \mu)(\tilde{w}, \tilde{T}) = 0 \)
an initial value BVP

Adjoint problem: \(\mathcal{L}'(u, S, w, T, \lambda, \mu)(\tilde{u}, \tilde{S}) = 0 \)
a final value BVP

Control problem: \(\mathcal{L}'(u, S, w, T, \lambda, \mu)(\tilde{\lambda}) = 0 \)
\(\mathcal{L}'(u, S, w, T, \lambda, \mu)(\tilde{\mu}) = 0 \)
Algorithmic tweak: regularization factor continuation

\[\tilde{M}g = R \, g_{\text{reg}} + g_{\text{mis}} \]

Concept: “size” of \(R \, g_{\text{reg}} \) should be proportional to that of \(g_{\text{mis}} \)

\[n_{\text{reg}} = \frac{g_{\text{reg}}}{\| g_{\text{reg}} \|}, \quad n_{\text{mis}} = \frac{g_{\text{mis}}}{\| g_{\text{mis}} \|} \]

\[\tilde{M}g = \| g_{\text{mis}} \| \left(\varphi \, n_{\text{reg}} + n_{\text{mis}} \right), \quad \varphi = R \, \frac{\| g_{\text{reg}} \|}{\| g_{\text{mis}} \|} \approx 0.5 \to 0.3 \]

\[R = \varphi \, \frac{\| g_{\text{mis}} \|}{\| g_{\text{reg}} \|} \]
Outline

1. Background

2. 3D forward wave simulation problem
 - PML formulations for elastodynamics

3. 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site

4. Conclusions
 - Summary
 - Challenges
Numerical Experiments

Example 1: smoothly-varying heterogeneous medium
Example 2: layered medium
Example 3: layered medium with inclusion
Example 4: layered medium with 3 inclusions
min \(c_s = 200 \text{ m/s} \)
max \(c_p = 433 \text{ m/s} \)
element size = 1.25 \text{ m}
\(\Delta t = 10^{-3} \text{ s} \)
time steps = 400/450
elements = 72'324
state unknowns = 3'578'136
material unknowns = 616'850

\[
\lambda(z) = \mu(z) = 80 + 0.45 |z| + 35 \exp \left(-\frac{(|z| - 22.5)^2}{150} \right) \text{ (MPa)}
\]
Smoothly varying medium: target λ and μ (MPa); and profile at $(x, y) = (0, 0)$
Single-parameter inversion (μ only)

λ (a priori known)

μ (inverted)
Single-parameter inversion (μ only)

$$(x, y) = (0, 0)$$

$$(x, y) = (10, 10)$$

$$(x, y) = (20, 20)$$
Single-parameter inversion (λ only)

\(\lambda\) (inverted)
\(\mu\) (a priori known)
Single-parameter inversion (λ only)

$$(x, y) = (0, 0)$$

$$(x, y) = (10, 10)$$

$$(x, y) = (20, 20)$$
Simultaneous inversion for λ and μ - unbiased

λ (inverted)

μ (inverted)
A physics-based algorithmic tweak

Bias search directions of λ by the search directions of μ during the early stages of the inversion process:

$$s^\lambda_k \leftarrow \|s^\lambda_k\| \left(W \frac{s^\mu_k}{\|s^\mu_k\|} + (1 - W) \frac{s^\lambda_k}{\|s^\lambda_k\|}\right)$$

$$W = 1 \rightarrow 0$$
Simultaneous inversion for λ and μ - biased

λ (inverted)

μ (inverted)
Simultaneous inversion: λ cross-sections

$(x, y) = (0, 0)$
$(x, y) = (10, 10)$
$(x, y) = (20, 20)$
Simultaneous inversion: μ cross-sections

$(x, y) = (0, 0)$
$(x, y) = (10, 10)$
$(x, y) = (20, 20)$
Misfit history; frequency continuation scheme

\[f_{\text{max}} = 20 \text{ Hz} \quad f_{\text{max}} = 30 \text{ Hz} \quad f_{\text{max}} = 40 \text{ Hz} \]
Example 2: setup

Layered medium: target λ and μ (MPa); and profile at $(x, y) = (0, 0)$
Simultaneous inversion ($f_{max} = 10$ Hz)
Simultaneous inversion ($f_{max} = 40$ Hz)
Example 3: setup

Layered medium: target λ and μ (MPa); and profile at $(x, y) = (7.5, 0)$
Simultaneous inversion \((f_{max} = 10 \text{ Hz}) \)

\[\lambda \text{ (inverted)} \]

\[\mu \text{ (inverted)} \]
Simultaneous inversion \((f_{max} = 40 \text{ Hz}) \)
20% Gaussian noise, $f_{max} = 40$ Hz

\(\lambda \) (inverted) \\
\(\mu \) (inverted)
Inversion with Gaussian noise: λ, μ cross-sections

$$(x, y) = (7.5, 0)$$
Example 4: setup

Layered medium with three inclusions: target λ and μ (MPa) at two different cross-sections.

state unknowns = 9,404,184; # material unknowns = 2,429,586

80 m × 80 m × 45 m medium
Example 4: setup

Layered medium with three inclusions: target λ and μ on (left) the $z = -8.75$ m cross-section; and (right) the $z = -35$ m cross-section
Simultaneous inversion ($f_{max} = 40$ Hz)

\(\lambda\) (inverted) \hspace{2cm} \(\mu\) (inverted)
Simultaneous inversion ($f_{max} = 40$ Hz)

λ (inverted)

μ (inverted)
Simultaneous inversion ($f_{max} = 40$ Hz)
Simultaneous inversion \((f_{\text{max}} = 40 \, \text{Hz})\)
Outline

1. Background

2. 3D forward wave simulation problem
 - PML formulations for elastodynamics

3. 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site

4. Conclusions
 - Summary
 - Challenges
Garner Valley field experiment
The experiment layout

computational domain: 126 × 68 × 40 m + 10 m-thick PML
#material parameters: 718,566
#state unknowns: 3,885,648
FWI profiles

c_p (m/s)
c_s (m/s)
SASW c_s profile
Cross-sectional profiles: $x = 10 \text{ m}$
Time-history comparisons: \(x = +10 \) m

Sensor locations; from top-left to bottom-right: \(y = 60, 40, 20, 0 \) m
Time-history comparisons: $x = +90$ m

Sensor locations; from top-left to bottom-right: $y = 60, 40, 20, 0$ m
Time-history comparisons: \(x = +100 \text{ m} \)

Sensor locations; from top-left to bottom-right: \(y = 60, 40, 20, 0 \text{ m} \)
Outline

1. Background
2. 3D forward wave simulation problem
 - PML formulations for elastodynamics
3. 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
4. Conclusions
 - Summary
 - Challenges
A systematic framework for FWI-based site characterization
Outline

1. Background

2. 3D forward wave simulation problem
 - PML formulations for elastodynamics

3. 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site

4. Conclusions
 - Summary
 - Challenges
Challenges

- Material attenuation - inversion for attenuation parameters a huge challenge

- Real time - experiment steering

- Ground water level

- Beyond elasticity: poroelasticity / permeability

- Algorithmic improvements for speed and robustness

- Multi-physics probing (unlikely)

- Validation (difficult - control setting)
L. F. Kallivokas, A. Fathi, S. Kucukcoban, K. H. Stokoe II, J. Bielak, O. Ghattas

A. Fathi, B. Poursartip, L. F. Kallivokas

A. Fathi, L. F. Kallivokas, B. Poursartip

A. Fathi, L. F. Kallivokas, K. H. Stokoe II, B. Poursartip
Three-dimensional site characterization using full-waveform inversion: theory, computations, and field experiments, in preparation.