Difference between revisions of "Broadband Platform"

From SCECpedia
Jump to navigationJump to search
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[File:Bbp.jpg|256px|thumb|right|Fig 1: Broadband Platform.]]
+
[[File:SRL_Cover_v8.png|350px|thumb|right|Fig 1: The SCEC Broadband Platform scientific software modules can be combined to implement earthquake simulations that produce ground motion time series.]]
  
 
The SCEC Broadband Platform is a software system which generates 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan.
 
The SCEC Broadband Platform is a software system which generates 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan.
Line 10: Line 10:
  
 
The Broadband Platform was implemented using software development best practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of ease of installation and use.
 
The Broadband Platform was implemented using software development best practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of ease of installation and use.
 
== Description ==
 
The SCEC Broadband Platform (BBP) (Phase 1, June 2013 and March 2014) has been developed and released as open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The BBP has been developed by a scientific and engineering collaboration that involves geoscientists, civil engineers, graduate students, and scientific software developers. The SCEC BBP operates in two modes: validation simulations and scenario simulations. In validation mode, the BBP runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Here, the BBP calculates a number of goodness of fit (GOF) measurements that quantify how well the model-based broadband seismograms match the observed seismograms. Based on these results, the BBP can be used to evaluate and validate different numerical ground motion modeling techniques. The BBP currently accommodates validation simulation inputs and observational data for 12 historical events from the eastern and western United States, eastern north America, and Japan. In scenario mode, the user specifies an earthquake description, a list of station names and locations, and a 1D velocity model for the region of interest simulations for hypothetical earthquakes, and the BBP software then calculates ground motions for the specified stations.
 
  
 
== Current Release ==
 
== Current Release ==
  
The current official release of Broadband Platform is v14.3.0. This is a new version of the platform that includes a large number of new capabilities. It is the first major release of the Broadband Platform since version 13.9.0, released in September 2013. Details of the new features along with several bugs fixes are provided in the release notes and the "changes" section below. New, and old Broadband platform users should work with this version of the software, and we recommend current Broadband platform users migrate to this new version whenever possible.
+
The current official release of Broadband Platform is v15.3.0. This is a new version of the platform that includes a large number of new capabilities. It is the first major release of the Broadband Platform since version 14.3.0, released in March 2014. Details of the new features along with several bugs fixes are provided in the release notes and the "changes" section below. New, and old Broadband platform users should work with this version of the software, and we recommend current Broadband platform users migrate to this new version whenever possible.
  
 
== Dependencies ==
 
== Dependencies ==
Line 23: Line 20:
  
 
*[http://www.python.org/download/ Python 2.6+] with
 
*[http://www.python.org/download/ Python 2.6+] with
**[http://new.scipy.org/download.html NumPy 1.4.1]
+
**[http://github.com/numpy/numpy NumPy 1.4.1]
**[http://new.scipy.org/download.html Scipy 0.7.2]
+
**[http://github.com/scipy/scipy Scipy 0.7.2]
 
**[http://matplotlib.sourceforge.net/ matplotlib 1.0.1]
 
**[http://matplotlib.sourceforge.net/ matplotlib 1.0.1]
**[http://code.google.com/p/pyproj/ PyProj 1.8.9]
+
**[http://github.com/jswhit/pyproj PyProj 1.8.9]
 
*[http://gcc.gnu.org GNU compilers (gcc, gfortran) v4.5.1]
 
*[http://gcc.gnu.org GNU compilers (gcc, gfortran) v4.5.1]
*[http://software.intel.com/en-us/articles/non-commercial-software-download/ Intel compilers (64-bit) 12.0.4]
 
 
Please refer to the [[Broadband User Guide v14.3.0]] for more details about the specific versions required for each of the packages above. A non-commercial copy of Intel C and FORTRAN compilers can be obtained by registering for a [http://software.intel.com/en-us/articles/non-commercial-software-development/ non-commercial account with Intel] and downloading the compilers from the Intel website.
 
 
== Documentation ==
 
  
User Guide Wiki (includes installation instructions):
+
Please refer to the [[Broadband User Guide v15.3.0]] for more details about the specific versions required for each of the packages above. This version of the Broadband Platform does NOT require Intel compilers. If you are using the Broadband Platform Virtual Box Image we provide with this BBP release, all the above dependencies are installed inside the Virtual Box environment and do not need to be installed by the user.
*[[Broadband User Guide v14.3.0]]
 
*[[Broadband File Format Guide]]
 
  
== Downloads ==
+
== Documentation Including Installation Instructions ==
  
To install and use the Broadband platform, you need the source code, one or more Green's Functions packages, and optionally one or more Validation packages. The Broadband Platform contains cumulative improvements to the geoscientific codes and software infrastructure. We recommend use of the most recent version of the Broadband Platform, unless you are trying to reproduce results generated with an earlier version of the platform.
+
Please see the BBP User Guide Wiki pages below information on how to install the Broadband Platform on your computer. The BBP Virtual Box Image guide offers information on how to set up Virtual Box on your computer and how to download, install and use the Broadband Platform Virtual Image. The File Format Guide includes information about the various files formats used and produced by the Broadband Platform.
  
Users that are upgrading from previous version of the Broadband Platform will need to retrieve new versions of all the Broadband Platform packages as there have been significant changes in all the packages since the previous 13.9.0 release.
+
* [[Broadband User Guide v15.3.0]]
 +
* [[BBP 15.3.0 Virtual Box Image]]
 +
* [[Broadband File Format Guide]]
 +
* [[Broadband v15.3.0 Release Notes]]
  
There are detailed installation instructions in the [[Broadband User Guide v14.3.0]].
+
== Installation Overview ==
 +
This section provides a brief overview of how the Broadband Platform can be installed on your local Linux or Mac OS X computer. There are additional, more detailed, installation instructions in the [[Broadband User Guide v15.3.0]].
  
Detailed instructions to setup the Broadband Platform as a local installation on a Linux Machine are provided in the [[Broadband User Guide v14.3.0]]. Briefly, they can be summarized in the following steps:
+
Briefly, BBP installation can be summarized in the following steps:
# The software can be installed in an account on a Linux computer with at least 10GB of disk storage and C, Fortran, and Python software installed.
+
# The software can be installed in an account on a Linux or Mac OS X computer with at least 10GB of disk storage and C, Fortran, and Python software installed.
# From this Linux computer, start a web browser and point to this download page.  Alternatively, you can download the files to a different machine and use FTP or SFTP to copy them over.
+
# From the Linux/Mac computer, start a web browser and point to this download page.  Alternatively, you can download the files to a different machine and use FTP or SFTP to copy them over.
# Download each file into a directory and run the md5sum program to confirm you have an undamaged version of the distribution files by comparing the md5sum provided below against the one calculated at the local Linux computer.
+
# After downloading each file, run the md5sum program to confirm you have an undamaged version of the distribution files by comparing the md5sum provided in the .md5 files against the one calculated at the local computer.
# Uncompress the distribution (tar.gz) files into the proper directory structure as described in the [[Broadband User Guide v14.3.0]].
+
# Uncompress the distribution (tar.gz) files into the proper directory structure as described in the [[Broadband User Guide v15.3.0]].
 
# Build the executables by running the top level makefile.
 
# Build the executables by running the top level makefile.
 
# Configure your environment by adding a few Broadband Platform variables to your shell's environment.
 
# Configure your environment by adding a few Broadband Platform variables to your shell's environment.
Line 57: Line 51:
 
# Use the platform for research purposes.
 
# Use the platform for research purposes.
  
== Current Broadband Platform Release ==  
+
== Current Broadband Platform Release Downloads ==  
  
The current SCEC Broadband platform release is v14.3.0. Links to the source distribution and Green's Functions and Validation packages are listed in the table below:
+
The current SCEC Broadband platform release is v15.3.0. Please refer to the [[BBP 15.3.0 Virtual Box Image]] guide for instructions on using the BBP Virtual Box Image available with this release. For installing the Broadband Platform on your computer, please continue reading this page.
  
{| class="wikitable" border="1" cellpadding="5" cellspacing="0"
+
To install and use the Broadband platform, you need the source code, one or more Green's Functions packages, and optionally one or more Validation packages. New versions of the Broadband Platform software contain cumulative improvements to the geoscientific codes and software infrastructure. We recommend use of the most recent version of the Broadband Platform, unless you are trying to reproduce results generated with an earlier version of the platform.
|-
 
! rowspan="2"| Version
 
! rowspan="2"| Release Date
 
! colspan="3"| Files
 
! rowspan="2"| User Guide
 
|-
 
! Source Code
 
! Green's Functions Packages
 
! Validations Packages
 
|-
 
! scope="row" rowspan="1" | 14.3.0
 
| 03/31/2014
 
| Send email to software@scec.org to request a copy,
 
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/bbp-dist-14.3.0.tar.gz.md5 BBP 14.3.0.md5]
 
| [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/centraljapan-velocity-model-14.3.0.tar.gz Central Japan], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/centraljapan-velocity-model-14.3.0.tar.gz.md5 Central Japan.md5]
 
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/labasin-velocity-model-14.3.0.tar.gz LA Basin], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/labasin-velocity-model-14.3.0.tar.gz.md5 LA Basin.md5]
+
Users that are upgrading from previous version of the Broadband Platform will need to retrieve new versions of all the Broadband Platform packages as there have been significant changes in all the packages since the previous 14.3.0 release.
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/lomap-velocity-model-14.3.0.tar.gz LOMAP (NoCal)], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/lomap-velocity-model-14.3.0.tar.gz.md5 LOMAP.md5]
+
==== Required Files ====
 +
The following packages are the minimum set of files required to run the Broadband Platform. This set includes files needed for running the Unit and Acceptance tests.
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/mojave-velocity-model-14.3.0.tar.gz Mojave], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/mojave-velocity-model-14.3.0.tar.gz.md5 Mojave.md5]
+
* Source Distribution (56MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/bbp-dist-15.3.0.tar.gz BBP 15.3.0], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/bbp-dist-15.3.0.tar.gz.md5 BBP 15.3.0.md5]
 +
* LA Basin Model (1.4GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/labasin-velocity-model-15.3.0.tar.gz LA Basin], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/labasin-velocity-model-15.3.0.tar.gz.md5 LA Basin.md5] (Needed for Unit and Acceptance Tests)
 +
* Northridge Validation Event (17MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/northridge-validation-15.3.0.tar.gz Northridge], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/northridge-validation-15.3.0.tar.gz.md5 Northridge.md5] (Needed for Acceptance Tests)
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/westernjapan-velocity-model-14.3.0.tar.gz Western Japan], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/westernjapan-velocity-model-14.3.0.tar.gz.md5 Western Japan.md5]
+
==== Additional Regions/Velocity Models ====
 +
The following packages are optional downloads. Users should download packages for the regions they are interested in.
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/ceus1000-velocity-model-14.3.0.tar.gz Eastern United States], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/ceus1000-velocity-model-14.3.0.tar.gz.md5 Eastern United States.md5]
+
* Mojave (1.7GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/mojave-velocity-model-15.3.0.tar.gz Mojave], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/mojave-velocity-model-15.3.0.tar.gz.md5 Mojave.md5]
 +
* Northern California (1.4GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nocal-velocity-model-15.3.0.tar.gz NoCal], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nocal-velocity-model-15.3.0.tar.gz.md5 NOCAL.md5]
 +
* Western Japan (1.8GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/westernjapan-velocity-model-15.3.0.tar.gz Western Japan], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/westernjapan-velocity-model-15.3.0.tar.gz.md5 Western Japan.md5]
 +
* Central Japan (1.8GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/centraljapan-velocity-model-15.3.0.tar.gz Central Japan], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/centraljapan-velocity-model-15.3.0.tar.gz.md5 Central Japan.md5]
 +
* Eastern Canada (3.3GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/canada1000-velocity-model-15.3.0.tar.gz Eastern Canada], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/canada1000-velocity-model-15.3.0.tar.gz.md5 Eastern Canada.md5]
 +
* Eastern United States (3.5GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/ceus1000-velocity-model-15.3.0.tar.gz Eastern United States], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/ceus1000-velocity-model-15.3.0.tar.gz.md5 Eastern United States.md5]
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/canada1000-velocity-model-14.3.0.tar.gz Eastern Canada], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/canada1000-velocity-model-14.3.0.tar.gz.md5 Eastern Canada.md5]
+
==== GMPE Verification Pacakges ====
 +
* GMPEs (3.2MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/gmpe-verification-15.3.0.tar.gz GMPEs], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/gmpe-verification-15.3.0.tar.gz.md5 GMPE.md5] (Requires both LA Basin and Northern California Regions)
  
| [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/lomaprieta-validation-14.3.0.tar.gz Loma Prieta], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/lomaprieta-validation-14.3.0.tar.gz.md5 Loma Prieta.md5]
+
==== Additional Validation Events ====
  
[http://hypocenter.usc.edu/research/bbp/versions/14.3.0/northridge-validation-14.3.0.tar.gz Northridge], [http://hypocenter.usc.edu/research/bbp/versions/14.3.0/northridge-validation-14.3.0.tar.gz.md5 Northridge.md5]
+
* Loma Prieta (14MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/lomaprieta-validation-15.3.0.tar.gz Loma Prieta], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/lomaprieta-validation-15.3.0.tar.gz.md5 Loma Prieta.md5] (Requires Northern California Region)
|[[Broadband User Guide v14.3.0]]
 
[[Broadband v14.3.0 Release Notes]]
 
|}
 
  
== Older Broadband Platform Releases ==
+
Please log into the [https://scec.usc.edu/it/Broadband_Release_15.3.0#Additional_Validation_Events private wiki] to download additional validation events.
 
 
Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the [[Broadband Platform Previous Releases]] page.
 
  
 
== Supporting Materials ==
 
== Supporting Materials ==
*[http://hypocenter.usc.edu/research/broadband/bbp_ssa2011-v1.pptx Broadband Platform Presentation - SSA 2011 - Robert Graves (5MB pptx file)]
+
*[http://hypocenter.usc.edu/research/bbp/Maechling_BBP_5May2015.pdf Maechling BBP Overview (PDF, 1.2MB)]
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_AGU_poster.pdf Broadband poster from AGU 2010 (PDF, 882 KB)]
+
*[http://hypocenter.usc.edu/research/SSA/Broadband-poster-SSA-2014-final.pdf Broadband Poster from SSA 2014 - Fabio Silva (PDF, 8.3MB)]
 +
*[http://hypocenter.usc.edu/research/AGU14/Broadband-poster-AGU-2014.pdf Broadband poster from AGU 2014 (PDF, 13.8MB)]
 
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_overview.ppt Broadband overview talk from SC10 (PPT, 3.7 MB)]  
 
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_overview.ppt Broadband overview talk from SC10 (PPT, 3.7 MB)]  
 
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_module_schematics.pptx Technical diagrams of Broadband module relationships (PPTX, 16 KB)]
 
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_module_schematics.pptx Technical diagrams of Broadband module relationships (PPTX, 16 KB)]
 
== Development version ==
 
 
If you're interested in working with the latest development version of the platform, you can check it out from
 
svn co https://source.usc.edu/svn/broadband/trunk
 
 
Details about working with the development version are provided in the User Guide.
 
 
The next version of Broadband is expected to be released in Q1 of 2015. <!--Here is our release schedule: [[Broadband_Platform_15_3_0]]. Here is a list of features and bugs that have been implemented and resolved since the last official release of the Broadband Platform: [[Broadband Trunk Release Notes]]
 
 
Additional details about this version is available here:
 
*[[Broadband Development Version]]
 
 
Details about an un-released development version of broadband are posted here:
 
*[[Broadband User Guide v11.7.0]]
 
-->
 
  
 
== Help ==
 
== Help ==
 
 
For assistance with the Broadband Platform, you may
 
For assistance with the Broadband Platform, you may
 
* Email software @ scec.org with specific questions
 
* Email software @ scec.org with specific questions
Line 130: Line 98:
  
 
== License ==
 
== License ==
 
 
SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here [[Broadband License]].
 
SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here [[Broadband License]].
  
== Collaborators ==
+
== Broadband Platform Developers and Collaborators ==
 
+
*[http://peer.berkeley.edu Pacific Earthquake Engineering Research Center]
 +
*[http://www.geology.sdsu.edu/ San Diego State University Dept of Geological Sciences]
 +
*[http://www.scec.org SCEC]
 +
*[http://scec.usc.edu/scecpedia SCEC/CME Project]
 
*[http://www.erdw.ethz.ch/index_EN ETH Zurich - Swiss Federal Institute of Technology Zurich]
 
*[http://www.erdw.ethz.ch/index_EN ETH Zurich - Swiss Federal Institute of Technology Zurich]
*[http://www.seismo.unr.edu University of Nevada Reno]
 
*[http://www.uwo.ca/earth/ University of Western Ontario]
 
*[http://peer.berkeley.edu Pacific Earthquake Engineering Research Center]
 
 
*[http://www.ce.berkeley.edu University of California, Berkeley]
 
*[http://www.ce.berkeley.edu University of California, Berkeley]
*[http://www.geology.sdsu.edu/ San Diego State University Dept of Geological Sciences]
 
 
*[http://www.geol.ucsb.edu/ U.C. Santa Barbara Dept of Earth Sciences]
 
*[http://www.geol.ucsb.edu/ U.C. Santa Barbara Dept of Earth Sciences]
 
*[http://www.crustal.ucsb.edu/ UCSB Institute for Crustal Studies]
 
*[http://www.crustal.ucsb.edu/ UCSB Institute for Crustal Studies]
 +
*[http://www.seismo.unr.edu University of Nevada Reno]
 +
*[http://www.uwo.ca/earth/ University of Western Ontario]
 
*[http://www.urscorp.com/ URS Corporation]
 
*[http://www.urscorp.com/ URS Corporation]
*[http://www.scec.org SCEC]
 
*[http://scec.usc.edu/scecpedia SCEC/CME Project]
 
  
 
== Frequently Asked Questions (FAQ) ==
 
== Frequently Asked Questions (FAQ) ==
Line 151: Line 117:
 
* [[BBP FAQ]]
 
* [[BBP FAQ]]
  
== See Also ==
+
== Related Wiki Entries ==
 +
*[http://scec.usc.edu/scecpedia SCEC Wiki Main]
 +
*[http://www.scec.org SCEC Home Page]
 
*[[SWUS Project]]
 
*[[SWUS Project]]
*[[Broadband Platform 2007]]
 
 
*[http://scec.usc.edu/scecpedia/software SCEC Software Downloads]
 
*[http://scec.usc.edu/scecpedia/software SCEC Software Downloads]
*[http://scec.usc.edu/scecpedia SCEC Wiki Main]
 
*[http://www.scec.org SCEC Home Page]
 
*[[Broadband User Guide Current]]
 
*[[Broadband User Guide Development]]
 
*[[Broadband Server]]
 
*[[Broadband Hanging Wall Simulation]]
 
*[[Broadband Development]]
 
*[[Broadband Platform Installation Guide Current]]
 
*[[Broadband Platform User Guide Current]]
 
*[[BBP_14.10_Image]]
 
  
==References==
+
== Older Broadband Platform Releases ==
 +
Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the [[Broadband Platform Previous Releases]] page.
 +
 
 +
== Development version ==
 +
If you're an advanced user, interested in working with the latest development version of the platform, you can check it out from
 +
svn co https://source.usc.edu/svn/broadband/trunk
 +
 
 +
Details about working with the development version are provided in the User Guide. Changes implemented in the development version are available here [[Broadband Trunk Release Notes]].
 +
 
 +
The next version of Broadband is expected to be released in Q4 of 2015.
 +
<!--
 +
Additional details about this version is available here:
 +
*[[Broadband Development Version]]
 +
 
 +
Details about an un-released development version of broadband are posted here:
 +
*[[Broadband User Guide v11.7.0]]
 +
-->
 +
 
 +
== References 2015 ==
 +
# Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions, Seismological Research Letters, January/February 2015, v. 86, p. 68-74, doi:10.1785/0220140098
 +
# Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform, Seismological Research Letters, January/February 2015, v. 86, p. 48-60, doi:10.1785/0220140097
 +
# Crempien, J. G. F., and Archuleta, R. J. (2015) UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources, Seismological Research Letters, January/February 2015, v. 86, p. 61-67,  doi:10.1785/0220140103
 +
# Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismological Research Letters, January/February 2015, v. 86, p. 39-47, doi:10.1785/0220140118
 +
# Dreger, D. S., and Jordan, T. H. (2015) Introduction to the Focus Section on Validation of the SCEC Broadband Platform V14.3 Simulation Methods Seismological Research Letters, January/February 2015, v. 86, p. 15-16, doi:10.1785/0220140233
 +
# Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismological Research Letters, January/February 2015, v. 86, doi: 10.1785/0220140104
 +
# Graves, R., and Pitarka, A. (2015) Refinements to the Graves and Pitarka (2010) Broadband Ground‐Motion Simulation Method Seismological Research Letters, January/February 2015, v. 86, p. 75-80, doi:10.1785/0220140101
 +
# Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismological Research Letters, January/February 2015, v. 86, p. 27-38, doi: 10.1785/0220140125
 +
# Olsen, K. B., Takedatsu, R., (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, doi:10.1785/0220140102
  
 +
== Earlier Publications ==
 
#Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057.  [http://hypocenter.usc.edu/research/broadband/documents/Graves_Pitarka_2010.pdf link]
 
#Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057.  [http://hypocenter.usc.edu/research/broadband/documents/Graves_Pitarka_2010.pdf link]
 
#Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. [http://hypocenter.usc.edu/research/broadband/documents/Mai_Imperatori_Olsen_2010.pdf link]
 
#Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. [http://hypocenter.usc.edu/research/broadband/documents/Mai_Imperatori_Olsen_2010.pdf link]
 +
# Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102
 
#Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689.  [http://hypocenter.usc.edu/research/broadband/documents/Schmedes_Archuleta_Lavallee_2010.pdf link]
 
#Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689.  [http://hypocenter.usc.edu/research/broadband/documents/Schmedes_Archuleta_Lavallee_2010.pdf link]

Revision as of 02:56, 16 March 2016

Fig 1: The SCEC Broadband Platform scientific software modules can be combined to implement earthquake simulations that produce ground motion time series.

The SCEC Broadband Platform is a software system which generates 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan.

Overview

The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-100 Hz) ground motions for earthquakes. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, research engineers, graduate students, and the SCEC/CME software development group. SCEC scientific groups have contributed modules to the Broadband Platform including rupture generation, low- and high-frequency seismogram synthesis, non-linear site effects, and visualization. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers with some experience interpreting ground motion simulations.

Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge and Loma Prieta) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots. Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand without requiring knowledge of any of the code involved. Users may run a validation event, supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list. Currently the platform supports stations and events in Southern California, the Bay Area, the Mojave Desert, Eastern United States, Eastern Canada, Central and Western Japan. Users may select among various method that include rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms. These codes have been validated against recorded ground motions from real events.

The Broadband Platform was implemented using software development best practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of ease of installation and use.

Current Release

The current official release of Broadband Platform is v15.3.0. This is a new version of the platform that includes a large number of new capabilities. It is the first major release of the Broadband Platform since version 14.3.0, released in March 2014. Details of the new features along with several bugs fixes are provided in the release notes and the "changes" section below. New, and old Broadband platform users should work with this version of the software, and we recommend current Broadband platform users migrate to this new version whenever possible.

Dependencies

Broadband has the following dependencies:

Please refer to the Broadband User Guide v15.3.0 for more details about the specific versions required for each of the packages above. This version of the Broadband Platform does NOT require Intel compilers. If you are using the Broadband Platform Virtual Box Image we provide with this BBP release, all the above dependencies are installed inside the Virtual Box environment and do not need to be installed by the user.

Documentation Including Installation Instructions

Please see the BBP User Guide Wiki pages below information on how to install the Broadband Platform on your computer. The BBP Virtual Box Image guide offers information on how to set up Virtual Box on your computer and how to download, install and use the Broadband Platform Virtual Image. The File Format Guide includes information about the various files formats used and produced by the Broadband Platform.

Installation Overview

This section provides a brief overview of how the Broadband Platform can be installed on your local Linux or Mac OS X computer. There are additional, more detailed, installation instructions in the Broadband User Guide v15.3.0.

Briefly, BBP installation can be summarized in the following steps:

  1. The software can be installed in an account on a Linux or Mac OS X computer with at least 10GB of disk storage and C, Fortran, and Python software installed.
  2. From the Linux/Mac computer, start a web browser and point to this download page. Alternatively, you can download the files to a different machine and use FTP or SFTP to copy them over.
  3. After downloading each file, run the md5sum program to confirm you have an undamaged version of the distribution files by comparing the md5sum provided in the .md5 files against the one calculated at the local computer.
  4. Uncompress the distribution (tar.gz) files into the proper directory structure as described in the Broadband User Guide v15.3.0.
  5. Build the executables by running the top level makefile.
  6. Configure your environment by adding a few Broadband Platform variables to your shell's environment.
  7. Confirm the code is built correctly by running UnitTests.
  8. Confirm the code runs correctly on your system by running AcceptanceTests.
  9. Use the platform for research purposes.

Current Broadband Platform Release Downloads

The current SCEC Broadband platform release is v15.3.0. Please refer to the BBP 15.3.0 Virtual Box Image guide for instructions on using the BBP Virtual Box Image available with this release. For installing the Broadband Platform on your computer, please continue reading this page.

To install and use the Broadband platform, you need the source code, one or more Green's Functions packages, and optionally one or more Validation packages. New versions of the Broadband Platform software contain cumulative improvements to the geoscientific codes and software infrastructure. We recommend use of the most recent version of the Broadband Platform, unless you are trying to reproduce results generated with an earlier version of the platform.

Users that are upgrading from previous version of the Broadband Platform will need to retrieve new versions of all the Broadband Platform packages as there have been significant changes in all the packages since the previous 14.3.0 release.

Required Files

The following packages are the minimum set of files required to run the Broadband Platform. This set includes files needed for running the Unit and Acceptance tests.

Additional Regions/Velocity Models

The following packages are optional downloads. Users should download packages for the regions they are interested in.

GMPE Verification Pacakges

  • GMPEs (3.2MB): GMPEs, GMPE.md5 (Requires both LA Basin and Northern California Regions)

Additional Validation Events

Please log into the private wiki to download additional validation events.

Supporting Materials

Help

For assistance with the Broadband Platform, you may

  • Email software @ scec.org with specific questions
  • Browse and submit new trouble tickets, or feature requests, at Broadband Trac site. SCEC user login is required to submit trouble tickets this way.

License

SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here Broadband License.

Broadband Platform Developers and Collaborators

Frequently Asked Questions (FAQ)

We post BBP user questions and our response to a Broadband Platform Frequently Asked Questions (FAQ) page:

Related Wiki Entries

Older Broadband Platform Releases

Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the Broadband Platform Previous Releases page.

Development version

If you're an advanced user, interested in working with the latest development version of the platform, you can check it out from

svn co https://source.usc.edu/svn/broadband/trunk

Details about working with the development version are provided in the User Guide. Changes implemented in the development version are available here Broadband Trunk Release Notes.

The next version of Broadband is expected to be released in Q4 of 2015.

References 2015

  1. Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions, Seismological Research Letters, January/February 2015, v. 86, p. 68-74, doi:10.1785/0220140098
  2. Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform, Seismological Research Letters, January/February 2015, v. 86, p. 48-60, doi:10.1785/0220140097
  3. Crempien, J. G. F., and Archuleta, R. J. (2015) UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources, Seismological Research Letters, January/February 2015, v. 86, p. 61-67, doi:10.1785/0220140103
  4. Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismological Research Letters, January/February 2015, v. 86, p. 39-47, doi:10.1785/0220140118
  5. Dreger, D. S., and Jordan, T. H. (2015) Introduction to the Focus Section on Validation of the SCEC Broadband Platform V14.3 Simulation Methods Seismological Research Letters, January/February 2015, v. 86, p. 15-16, doi:10.1785/0220140233
  6. Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismological Research Letters, January/February 2015, v. 86, doi: 10.1785/0220140104
  7. Graves, R., and Pitarka, A. (2015) Refinements to the Graves and Pitarka (2010) Broadband Ground‐Motion Simulation Method Seismological Research Letters, January/February 2015, v. 86, p. 75-80, doi:10.1785/0220140101
  8. Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismological Research Letters, January/February 2015, v. 86, p. 27-38, doi: 10.1785/0220140125
  9. Olsen, K. B., Takedatsu, R., (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, doi:10.1785/0220140102

Earlier Publications

  1. Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057. link
  2. Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. link
  3. Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102
  4. Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689. link