Comparisons of CyberShake models

- CyberShake 1.0 uses CVM-SCEC as the velocity model and rupture generator described in Graves and Pitarka (2007)
 - Rupture propagates more coherently
- CyberShake 1.1 uses CVM-SCEC as the velocity model and rupture generator described in Graves and Pitarka (2010)
 - Rupture propagates less coherently
- We can compare CyberShake models using "averaging-based factorization" scheme (Wang and Jordan, 2013)
 - Expected shaking intensities are constructed from a hierarchy of averaging operations over slip variations (s), hypocenters (x), sources (k), and sites (r)

Comparisons of CyberShake models

- CyberShake 1.0 uses CVM-SCEC as the velocity model and rupture generator described in Graves and Pitarka (2007)
 - Rupture propagates more coherently
- CyberShake 1.1 uses CVM-SCEC as the velocity model and rupture generator described in Graves and Pitarka (2010)
 - Rupture propagates less coherently
- We can compare CyberShake models using "averaging-based factorization" scheme (Wang and Jordan, 2013)

$$G^{(1.0)}(r,k,x,s) - G^{(1.1)}(r,k,x,s)$$

= $a + b(r) + c(r,k) + d(r,k,x) + e(r,k,x,s)$

SC/EC

Southern California Earthquake Center

Directivity effects are smaller in CyberShake 1.1 than CyberShake 1.0

Directivity effects are smaller in CyberShake 1.1 than CyberShake 1.0

Path effects are larger in CyberShake 1.1 than CyberShake 1.0

Discussion

- CyberShake 1.1
 - More randomness and heterogeneities in slip and rupture propagations -> more seismic wave energy radiated from a source
- Comparison of CyberShake 1.0 and 1.1 (for SA at 3.0 s)
 - CyberShake 1.1 shows smaller directivity and directivity-basin coupling effects, but larger basin effects due to basin-guide wave excitations