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Overview

• What are “workflows”?
• What elements make up a workflow?
• What problems do workflow tools solve?
• What should you consider in selecting a tool for your 

work?
• How have workflow tools helped me in my work?
• Why should you use workflow tools?
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Workflow Definition

• Formal way to express a calculation
• Multiple tasks with dependencies between them
• No limitations on tasks

– Short or long
– Loosely or tightly coupled

• Capture task parameters, input, output
• Independence of workflow process and data

– Often, run same workflow with different data
• You use workflows all the time…
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Sample Workflow
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#!/bin/bash
1) Stage-in input data to compute environment
scp myself@datastore.com:/data/input.txt /scratch/input.txt
2) Run a serial job with an input and output
bin/pre-processing in=input.txt out=tmp.txt
3) Run a parallel job with the resulting data
mpiexec bin/parallel-job in=tmp.txt out_prefix=output
4) Run a set of independent serial jobs in parallel – scheduling by hand
for i in `seq 0 $np`; do

bin/integrity-check output.$i &
done
5) While those are running, get metadata and run another serial job
ts=`date +%s`
bin/merge prefix=output out=output.$ts
6) Finally, stage results back to permanent storage
scp /scratch/output.$ts myself@datastore.com:/data/output.$ts



Workflow schematic of shell script
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Workflow Elements

• Task executions with dependencies
– Specify a series of tasks to run
– Outputs from one task may be inputs for another

• Task scheduling
– Some tasks may be able to run in parallel with other tasks

• Resource provisioning (getting processors)
– Computational resources are needed to run jobs on
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Workflow Elements (cont.)

• Metadata and provenance
– When was a task run?
– Key parameters and inputs

• File management
– Input files must be present for task to run
– Output files may need to be archived elsewhere
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What do we need help with?

• Task executions with dependencies
– What if something fails in the middle?
– Dependencies may be complex

• Task scheduling
– Minimize execution time while preserving dependencies
– May have many tasks to run

• Resource provisioning
– May want to run across multiple systems
– How to match processors to work?
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• Metadata and provenance
– Automatically capture and track
– Where did my task run?  How long did it take?
– What were the inputs and parameters?
– What versions of code were used?

• File management
– Make sure inputs are available for tasks
– Archive output data

• Automation
– You have a workflow already – are there manual steps?
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Workflow Tools

• Software products designed to help users with 
workflows
– Component to create your workflow
– Component to run your workflow

• Can support all kinds of workflows
• Can run on local machines or large clusters
• Use existing code (no changes)
• Automate your pipeline
• Provide many features and capabilities for flexibility
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Problems Workflow Tools Solve

• Task execution
– Workflow tools will retry and checkpoint if needed

• Data management
– Stage-in and stage-out data
– Ensure data is available for jobs automatically

• Task scheduling
– Optimal execution on available resources

• Metadata
– Automatically track runtime, environment, arguments, inputs

• Resource provisioning
– Whether large parallel jobs or high throughput
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Workflow Webinar Schedule

Date Workflow Tool
March 8 Overview of Scientific Workflows
March 22 Makeflow and WorkQueue
April 12 Computational Data Workflow Mapping
April 26 Kepler Scientific Workflow System
May 10 RADICAL-Cybertools
May 24 Pegasus Workflow Management System
June 14 Data-flow networks and using the Copernicus workflow system
June 28 VIKING
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• Overview of different workflow tools to help you pick 
the one best for you



How to select a workflow tool

• Tools are solving same general problems, but differ 
in specific approach

• A few categories to think about for your work:
– Interface: how are workflows constructed?
– Workload: what does your workflow look like?
– Community: what domains does the tool focus on?
– Push vs. Pull: how are resources matched to jobs?

• Other points of comparison will emerge
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Interface

• How does a user construct workflows?
– Graphical: like assembling a flow chart
– Scripting: use a workflow tool-specific scripting language to 

describe workflow
– API: use a common programming language with a tool-

provided API to describe workflow
• Which is best depends on your application

– Graphical can be unwieldy with many tasks
– Scripting and API can require more initial investment

• Some tools support multiple approaches
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Workload

• What kind of workflow are you running?
– Many vs. few tasks
– Short vs. long
– Dynamic vs. static
– Loops vs. directed acyclic graph

• Different tools are targeted at different workloads
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Community

• What kinds of applications is the tool designed for?
• Some tools focus on certain science fields

– Have specific paradigms or task types built-in
– Workflow community will share science field
– Less useful if not in the field or users of the provided tasks

• Some tools are more general
– Open-ended, flexible
– Less domain-specific community
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Push vs. Pull

• Challenge: tasks need to run on processors 
somewhere

• Want the approach to be automated
• How to get the tasks to run on the processors?
• Two primary approaches:

– Push:  When work is ready, send it to a resource, waiting if 
necessary

– Pull: Gather resources, then find work to put on them
• Which is best for you depends on your target system 

and workload
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Push
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Remote queue
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. . .
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1)Task is submitted to 
remote job queue
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3)Task status is 
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Low overhead: nodes are only running when there is work
Must wait in remote queue for indeterminate time
Requires ability to submit remote jobs



Pull
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4)Task runs on pilot 
job

Overhead: pilot jobs may not map well to tasks
Can tailor pilot job size to remote system
More flexible: pilot job manager can run on either system



How do workflows help real applications?

• Let’s examine a real scientific application
• What will the peak seismic ground motion be in the 

next 50 years?
– Building codes, insurance

rates, emergency response
• Use Probabilistic Seismic

Hazard Analysis (PSHA)
– Consider 500,000 M6.5+

earthquakes per site
– Simulate each earthquake
– Combine shaking with

probability to create curve
– “CyberShake” platform
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CyberShake Computational Requirements

• Large parallel jobs
– 2 GPU wave propagation jobs, 800 nodes x 1 hour
– Total of 1.5 TB output

• Small serial jobs
– 500,000 seismogram calculation jobs

• 1 core x 4.7 minutes

– Total of 30 GB output
• Few small pre- and post-processing jobs
• Need ~300 sites for hazard map
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CyberShake Challenges

• Automation
– Too much work to run by hand

• Data management
– Input files need to be moved to the cluster
– Output files transferred back for archiving

• Resource provisioning
– How to move 500,000 small jobs through the cluster 

efficiently?
• Error handling

– Detect and recover from basic errors without a human
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CyberShake workflow solution

• Decided to use Pegasus-WMS
– Programmatic workflow description (API)
– Supports many types of tasks, no loops
– General community running on large clusters
– Supports push and pull approaches
– Based at USC ISI; excellent support

• Use Pegasus API to write workflow description
• Plan workflow to run on specific system
• Workflow is executed using HTCondor
• No modifications to scientific codes
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CyberShake solutions

• Automation
– Workflows enable automated submission of all jobs
– Includes generation of all data products

• Data management
– Pegasus automatically adds jobs to stage files in and out
– Could split up our workflows to run on separate machines
– Cleans up intermediate data products when not needed
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CyberShake solutions, cont.

• Resource provisioning
– Pegasus uses other tools for remote job submission

• Supports both push and pull

– Large jobs work well with this approach
– How to move small jobs through queue?
– Cluster tasks (done by Pegasus)

• Tasks are grouped into clusters
• Clusters are submitted to remote system to reduce job count

– MPI wrapper
• Use Pegasus-provided option to wrap tasks in MPI job
• Master-worker paradigm
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CyberShake solutions, cont.

• Error Handling
– If errors occur, jobs are automatically retried
– If errors continue, workflow runs as much as possible, then 

writes workflow checkpoint file
– Can provide alternate execution systems

• Workflow framework makes it easy to add new 
verification jobs
– Check for NaNs, zeros, values out of range
– Correct number of files
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CyberShake scalability

• CyberShake run on 9 systems since 2007
• First run on 200 cores
• Now, running on Blue Waters and OLCF Titan

– Average of 55,000 cores for 35 days
– Max of 238,000 cores (80% of Titan)

• Generated 340 million
seismograms
– Only ran 4372 jobs

• Managed 1.1 PB of data
– 408 TB transferred
– 8 TB archived

• Workflow tools scale!
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Why should you use workflow tools?

• Probably using a workflow already
– Replace manual steps and polling to monitor

• Scales from local system to large clusters
• Provides a portable algorithm description 

independent of data
• Workflow tool developers have thought of and 

resolved problems you haven’t even considered
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Thoughts from my workflow experience

• Automation is vital
– Put everything in the workflow: validation, visualization, 

publishing, notifications…
• It’s worth the initial investment
• Having a workflow provides other benefits

– Easy to explain process
– Simplifies training new people
– Move to new machines easily

• Workflow tool developers want to help you!
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Resources

• Blue Waters 2016 workflow workshop: 
https://sites.google.com/a/illinois.edu/workflows-
workshop/home

• Makeflow: http://ccl.cse.nd.edu/software/makeflow/
• Kepler: https://kepler-project.org/
• RADICAL-Cybertools: http://radical-cybertools.github.io/
• Pegasus: https://pegasus.isi.edu/
• Copernicus: http://copernicus-computing.org/
• VIKING: http://viking.sdu.dk/
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Questions?
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